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Domain growth in a binary mixture, after a quench through its demixing critical point, near
a boundary that attracts one of the components, is discussed. When mean-field theory is valid
for equilibrium properties, a single domain may form at the substrate for much weaker surface
interactions than those necessary for complete wetting in equilibrium. Prediction of a transition
from such a “plating” configuration to “surface droplets” is verified using cell-dynamical simulations.
At later times, if diffusion is the dominant transport process, simulations show the surface domain
thickness to increase according to the bulk domain growth law R = ¢'/3—if there is not too much
order near the boundary induced by the surface forces at early times. If a series of concentration
oscillations is set up near the boundary at early times, surface domain thickening can be greatly
slowed down. At still later times, the role that hydrodynamic flows play in changing the surface
domain size is studied: the surface tension to viscosity ratio vo = o /7 is an upper bound on interface
velocities. This bound is obeyed by recent experiments that show “fast” growth of surface domains.

PACS number(s): 68.10.Cr, 68.45.Gd, 05.70.Ln, 64.75.4+g

INTRODUCTION

The equilibrium theory of wetting [1, 2] concerns the
stability of coexisting phases in contact with a substrate.
A basic property of such an arrangement discovered by
Young in 1805 is that the contact angle that the interface
between the coexisting fluid phases makes with the sub-
strate is simply related to the surface tension between the
phases o and the difference in surface tension between
the two phases and the surface o, Complete
equilibrium wetting of the substrate by phase 2 (the re-
moval of all 1-2 contact lines from the surface) occurs for
01,8 — 02,5 > 0.

Here, I examine the effect of a substrate on the non-
equilibrium behavior of a mixture of two pure substances
with a critical demixing phase transition at a tempera-
ture T,.. For times t < 0, I suppose that the mixture
is at equilibrium in the one-phase region above T,; at
t = 0, the temperature is quenched below T.. Thermal
fluctuations will trigger “spinodal decomposition” of the
unstable mixture into domains of coexisting phases [3].
In the bulk, such domains grow in size, and under a va-
riety of conditions, the domain size grows as a power of
time.

Near the surface, there are symmetry-breaking inter-
actions since the affinities of the substrate for the two
mixture components differ: these interactions are respon-
sible for equilibrium wetting phenomena. In the nonequi-
librium case, the effect of the surface interactions is en-
hanced by the instability of the mixture after the quench.
I extend the conserved time-dependent Ginzburg-Landau
(CTDGL) model (also called the Cahn-Hilliard-Cook
model, or model B in the parlance of dynamic critical
phenomena) [3] of phase ordering to include surface ef-
fects in Sec. I, and in Sec. II ordering at early times is
discussed. The only transport mechanism in this model
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is diffusion.

A previous paper on this topic by Ball and Essery
(BE) [4] examined the role of heat transport and non-
symmetry-breaking surface forces: they discovered that
concentration waves may form, propagating from the sur-
face into the bulk. The waves form because of conser-
vation of each component of the mixture: an excess of
component 1 at the surface requires a nearby depletion
of component 1 and hence excess of component 2 some
distance into the bulk; iteration of this reasoning implies
a layered structure. In Sec. II I examine such phenomena
in the case where the surface field explicitly breaks the
symmetry of the two ordered phases. In Sec. III, thick-
ening of the surface domains at later times via diffusion
is discussed.

In Sec. IV I present results of simulations of a “cell-
dynamical system” closely related to the conserved
CTDGL model, including all the essential physical
elements: the conservation law, thermal noise, and
symmetry-breaking surface interactions. The transition
between surface droplets and a single “plated” surface do-
main matches the scaling result of Sec. II; concentration
waves similar to those studied by BE are also observed.
At late times, the surface layer thickness approaches a
growth law as discussed in Sec. III if the surface con-
centration wave structure is not too ordered. If there is
a highly ordered series of concentration oscillations, the
surface domains coarsen much more slowly than the bulk
domains.

At late times, surface tension may drive hydrodynamic
flows which cause much faster domain growth than that
due to diffusion [5]. In Sec. V I consider the effect of
such flows on the growth of surface domains: I find that
the characteristic capillary velocity o /7 is an upper limit
for interface velocities. Finally, in Sec. VI the current
experimental situation is discussed.

2861 ©1993 The American Physical Society
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I. MODEL FOR DIFFUSIVE PHASE
SEPARATION NEAR A SURFACE

A. Equation of motion

A scalar field ¥(r,t) is taken to represent the differ-
ence between the local concentrations of the two pure
components of a binary mixture, in the region z > 0.
Equilibrium is described by the free energy

F

= [air| & ¢ ¢
ﬁ—/dr[2¢2+4¢4+2(w)2

=328 (@) + o5 (1)

The surface fields S (z) are assumed to be smooth at

z = 0; the fields Ug) take into account “contact” con-
tributions to the surface free energy. This model with
only n = 1,2 surface potentials is the basic model used
to study equilibrium wetting phenomena [1, 2].
CTDGL dynamics of i take the form of a local con-

servation law [3]

oy

5 = v .J. (2)
Here J is the total order-parameter current and is made
up of two contributions. One is an average current
driven by inhomogeneities in the local chemical potential
u(r) = 0F/5¢(r); the corresponding current for small
inhomogeneities is MV, where M is a (constant) mo-
bility. The second contribution is a stochastic current
due to thermal fluctuations: each component of this cur-
rent j(r,t) is taken to be a Gaussian random variable
with correlations

Gr(r, )7 (x' 1)) = 2MET 6% (r — £')o(t — t').  (3)

The strength of the stochastic current is that required to
drive the field to equilibrium where the probability of a
state 1 (r) is proportional to exp(—F[¢¥]/kT).

The equation of motion for v is thus

k4

L = 2

5r = MViptn, (4)
where the scalar noise n(r,t) = V -j(r,t) has correlations
(n(x,t)n(c',t)) = —2MkTV?6%(r — ')6(t — t'). (5)

B. Boundary conditions

Integrating v over the system volume yields the surface
contribution

7]

a/Vd"lm/;(r,t) :—i-/sdd_lr (MVu+3), (6)

where S refers to the plane z = 0 and 2 is the unit normal
to S pointing in the +2z direction. Local conservation of ¢
allows us to suppose that the integrand is zero. However,
because of the very different short-time behaviors of the

two surface contributions (z-j and z- V), they are each
zero at z = 0.

One may see this by noting that the integral of the
z component of j over a short time 7 is of order 71/2
since j is Gaussian noise. However, the integral of the z
component of Vy is of order of 7, since Vi does not vary
appreciably on sufficiently short time scales. Taking 7 to
zero indicates that Z - j must itself vanish at z = 0; this
in turn implies that z- Vu = 0 at z = 0. Thus there are
no noise or diffusive currents through the surface z = 0.

The chemical potential p has the form

,U'(krj,.‘t) _ 6’(/) +u¢3 _ Cvz’l[} _ Zs(n)(z),d)n—l

—8(2) (cz Ve + Zag‘>¢"1) .M

The terms proportional to §(z) in (7) are due to the
(d — 1)-dimensional contact portion of the free energy. I
suppose this plane to be in equilibrium with the adjacent
d-dimensional bulk, or c¢z- V¢ + 3 ag)wn_l = 0. This
surface free-energy equilibrium condition is the same as
that encountered in the equilibrium theory of wetting [1,
2]; applied to this dynamic problem, it simplifies the form
of the chemical potential (7) since the contact terms van-
ish. This condition along with the boundary condition
that the normal derivative of 1 be zero, when combined
with an initial condition ¢(r,0), allow one to solve the
dynamical equation (4).

C. Rescaled model

Suppose that ¢ = ag for t < 0, and —a for t > 0.
In this paper changes in absolute temperature T are ig-
nored, as they are usually small in experiments. The
equation of motion and boundary conditions for ¢ may
be rescaled, using the transformation r/(c/a)l/? — r,
t/(c/Ma2kT) — t and v¥/(a/u)'/? — 3 suggested by the
characteristic distances, times, and field strengths of the
t > 0 dynamics:

% =2 |y +4° - VP - 3o + Ve
0=2z-Vyu, (8)

0=2-Vy+ > sfym?,

where now 7 = ag/a for t <0 and 7 = —1 for ¢t > 0, and
where g = 2uald—9/2,-4/2,

The rescaled noise 7 has correlations in the new coor-
dinates:

(n(r,t)n(x',t')) = =26 (r —x')8(t - t'), (9)

and the rescaled surface interactions take the form
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sg) _ a(n—3)/2c—1/2u(24n)/20.§3")’
s (2) = a(P=3/2c=1/2y(2=m)/25(n) g(n) (),
(10)
(c/a)*/?

d™(z) = 777)*—5(")([6/11]1/2,2),

0'(")5/ dz S™ (z).
0

The parameter g is the familiar Ginzburg parameter, and
thus the condition for mean-field bulk critical behavior
for g < 1 translates into the low-noise limit of the rescaled
dynamics [7].

I have introduced the total integrals of the finite-range
surface interactions o("); these have the same dimensions
as a(;), i.e., they are surface tensions. The amplitude
o is of the order of the difference between the surface
tensions of the two pure components with respect to the
wall, in units of kT. The normalized surface fields d(™
have unit integrals and allow us to see the similarities be-
tween the finite range and contact surface interactions.
As can be seen from (10), the two types of surface interac-
tions have the same dependence on the bulk parameters
a, ¢, and u, after rescaling. When (c/a)'/? becomes large
compared to the range of S(*), the functions d(™ become
§-function-like, and o("®) may be absorbed into 0'(;), al-
tering the boundary condition that results from surface
equilibrium.

II. DIFFUSIVE PHASE SEPARATION
NEAR A SURFACE AT EARLY TIMES

A. Scaling behavior: Low-noise case

1. Surface domain morphology:
“Plating” vs “droplets”

The rescaled model (8) allows us to tell when the
early time (rescaled time after quench of order unity)
dynamics near z = 0 changes from being dominated by
the surface forces to being dominated by the stochastic
forces. Throughout this section I assume the low-noise
case where /g < 1 [6]. Suppose s(™)(z) is absorbed into
sgl), as discussed in the preceding section; both are de-
scribed by the characteristic surface tensions Jg). The

transition occurs for sg) =~ /g or
ag’) ~ gldt2—2n)/4, (n—1)/2 (2—d)/4 (11)

For small a, the small-n terms with rescaled ampli-
tudes of order sgl) dominate: also, the nth-order term
dominates over the noise as a — 0 in dimensions larger
than d, = 2(n — 1). The n = 1 term becomes important
first as a is taken to zero, and it exceeds the stochastic
force for

ag) > op & a¥/dcD/4 (12)

For ,/g small, the fluctuations in the initial state are
small, and this transition corresponds to the point where
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the order parameter at the surface is driven in the direc-
tion of the symmetry-breaking surface field rather than
randomly by thermal noise. Without opposing surface
fields for n > 1, this condition should also describe the
transition from surface droplets to a single domain in con-
tact with the z = 0 plane. Formation of such a surface
domain will be referred to as plating.

In many cases, the n = 2 fields oppose the formation of
either ordered phase (i.e., ag) < 0), due to the smaller
coordination number of molecules at the surface com-
pared to those in the bulk. If sg) < sg), this effect may
be ignored. In general, sg) - s(Bz) > /g is required for
plating to occur.

2. Comparison with ?q)uilbrium wetting transition:
]

B1 > sgz)

One might ask where (in terms of distance from the
critical point) the plating-droplet transition occurs rel-
ative to the equilibrium wetting transition that occurs
for weak surface fields near the critical point. Equilib-
rium complete wetting will occur when the surface ten-
sion o between the two coexisting phases is less than the
difference in surface tensions o; s — 02 s between these
two phases and the substrate [8]. Again, there are two
regimes: ,/g < 1, where mean-field theory describes the
equilbrium behavior, and ,/g > 1, where fluctuations
qualitatively change the surface tensions of interest [2]. I
again study the case /g < 1.

In the rescaled units, all bulk properties (correlation
length, order-parameter scale) are of order unity, thus o
is of order 1. The difference in surface tensions between
the two phases and the substrate is 01, — 02,5, = sl;);

the criterion for complete wetting is sg) > 1. The ra-
tio between the threshold o}, required for plating to the
threshold for equilibrium wetting is just o,/0w = 1/g.
In this case, surface forces dominate the early time dy-
namics near the wetting surface for much weaker surface
interactions than those needed to drive complete wet-
ting for /g < 1. In summary, for plating to occur,
the symmetry-breaking field must overcome only (weak)
thermal fluctuations; for equilibrium complete wetting,
the difference in surface free energy of the two phases
must exceed the finite interphase surface tension. This
situation will be encountered whenever /g is small (the
quench must not be into the nonclassical scaling region).

3. Comparison with equilbrium wetting transition:
1) . (2)
sy’ = sp

In the case where sg) competes with sg), somewhat
stronger symmetry-breaking surface fields are required to
drive the transition to complete wetting. However, when
a — 0 (assuming /g < 1), the symmetry-breaking field

dominates, and complete wetting occurs [2] for 01(31) >
(a/u)l/zag). For /g small, this is essentially the same
as the plating condition for the case where the n = 1 and
n = 2 forces compete.
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4. Effect of inhomogeneity of
initial state following quench

The preceding criterion for plating is limited to cases
where the initial-state fluctuations are not much more
important than the surface and stochastic forces in the
final state. For ag > a this is true. In cases where mean-
field theory is valid, if only the n = 1 surface interaction is
present, the initial order-parameter profile is estimated to
be (Y1) =~ sg)/(ao/a—{—kz), where 9y, is the cosine Fourier
transform of ¢ (z). Since I am interested in forces acting
on the most unstable mode with £ ~ 1, one observes
that the initial condition never exceeds the surface force
in magnitude, even for quenches with ap/a = 1.

For highly asymmetric quenches (ap/a < 1) there is
the possibility of the dynamics at early times being domi-
nated by “critical adsorption” of the preferred phase near
z = 0 [9]. However, this will enbance the appearance of a
surface layer near z = 0 for ¢ > 0, and the above criterion
is a lower bound as to when the surface forces to have
greater effect than that of the stochastic force.

5. Front propagation from surface following quench

In the case where there is an extremely low level of
noise in the final state, the surface field causes a front
that propagates into the unstable bulk, an effect noted
by BE [4] in their study of phase ordering near a surface
without a symmetry-breaking surface field. This front
takes the form of concentration oscillations perpendicular
to the z = 0 plane which are damped beyond a distance
of order d = vt, where t is time after the quench, and
where v is a velocity of order unity in the rescaled units
(Ma3/?kT/c'/? in the original units).

As the front travels into the bulk, it eventually will
be disturbed by concentration fluctuations originating
from bulk thermal fluctuations: these grow roughly as
($?) ~ ge'/? at early times (where (¥?) <« 1). In
rescaled units, such a front penetrates a distance w such
that (¢%(t = w/v)>1/2 = sg), or w = ln(sg)/\/ﬁ) (the
appearance of sg) is discussed in Sec. IIB).

Thus for very low noise levels, a series of concentration
oscillations near the z = 0 surface may be obtained, con-
nected to a bulk composed of random domains. Studies
of the properties of these fronts, focusing on velocity se-
lection in the low-temperature limit, have been carried
out by a number of groups [4,10]. A complete analytical
calculation of the similar competition between an advanc-
ing front and thermally triggered bulk domains has been
carried out in the nonconserved case by Mazenko, Valls,
and Ruggiero [11].

B. Behavior of linearized model

If the nonlinear term in (8) is dropped, we may solve
the resulting linearized model; this is valid when || < 1.
The calculations of this section are similar to those of BE
[4]: they are appropriate for the weak-noise case (g < 1)
for times before the order parameter grows to be near
unity.
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In the bulk, I consider Fourier components of the or-
der parameter Y = f d?r €T, Ignoring the surface,
and dropping nonlinear terms (valid for |¢)| <« 1), the
equation of motion (8) is

Ohe = —k2(1 + k)i + v/gme, (13)

where the Gaussian noise 7 has correlations (mme/) =
k264(k +k')6(t —t'). Averaging over the noise, the equa-
tion of motion for Sy = <|¢k‘2> is

0: Sk = —2k*(T + k%) Sk + gk?. (14)

For 7 > 0 (times ¢ < 0 before the quench) we have the
equilibrium Sy (0) = g/2¢, where € = 7 + k2. This may
be used as the initial condition at t = 0 to obtain Sy for
t >0, when 7 = —1:

g [ e2o'kt

Sk(t) = =

k2(e2ot — 1)
’ + R

ag/a + k2 Ok

where o = k%(1 — k2). The most rapidly growing modes
have k = k* = 1/4/2, and grow as || ~ get/?. If
g < 1 and ag/a is not too small, the field strengths
are small until a time ¢ ~ —Ing.

Near the surface, I consider the effect of the fields
s (2), sg), and sg). Ignoring the nonlinear term and
averaging in transverse directions (eliminating deriva-
tives in  and y and the noise) leads to an equa-
tion for the transverse-averaged order parameter ¢(z) =

fdd_l'r w(r,t)/fdd_lr:
Ovp = 2(1¢p — 2 — sW)). (16)

To this are added the two z = 0 boundary conditions
discussed in Sec. II:

9.0 + sg) + sg)qb =0,

(17)
d.(r¢p— 82— sM) =0,

which are applied at z = 0. Alternatively, these equations
may be considered to be applied to ¥ (r,t) in the noise-
free case (g = 0).

Defining cosine Fourier transforms, e.g., ¢r =
J5 dz cos(kz)¢(z), allows us to write the equation of mo-
tion as

(2) 7.2
255’k
3t¢k = kz(sg) + Sgcl) - €k¢k) + SB

/0°o dk¢i. (18)

The symmetry-breaking contact and longer-ranged sur-
face interactions have very similar effects. The n = 2
contact force couples modes with different &, and to sim-
plify the calculations I will set sg) = 0 to focus on the
effect of the symmetry-breaking (n = 1) fields.

For t < 0, the equilibrium solution is ¢x(0) = [sg}) +
sg)]/ek. In the case of a short-ranged surface interaction,
s = 0, and thus the real-space adsorption is ¢(z,t <
0) = (sg)/rl/z)e_"l/zz. This result is valid so long as

sg)/Tl/2 <« 1. Using the more general result ¢4 (0) as an
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FIG. 1. Front propagation in linearized model of Sec. II B.

Plotted from bottom to top are ¢(z, t)/sg) for times t = 0, 2,
4, ..., 20 (¢t is added to each curve to offset them). The ticks

show where [¢>/sg)[ first exceeds 0.1 at each time, indicating
a front velocity of about 1.7.

initial condition, the ¢ > 0 evolution of ¢y is

_ 1) e8] eakt eo'kt 1
t) = + + .
r(t) [sk ] ] (ao/a k2 Ok (19)

As in the bulk, the fastest growing modes have k =
k* = 1/v/2, and grow as ¢p-(t) ~ [sfel.) + sg)]e‘/‘l. In
Fig. 1 d)(z,t)/sg) is shown for the case 3501) = 0 and
ao/a = 1; a front that propagates away from z = 0 at a
velocity of order unity is observed. Nonlinearities cause
selection of a different front velocity, but it will be of
order unity in the rescaled units [4, 10].

ITII. DIFFUSIVE LATE-STAGE
SURFACE GROWTH

1. Diffusive bulk domain growth

At late times, one can adopt a scaling description of
the growth of the bulk domains [12] as their interiors
approach the equilibrium concentrations |¢| = 9. The
free energy density is of order ppo. If the bulk domains
have a characteristic size R(t), local variations in free-
energy density are to be of order of the interfacial en-
ergy per unit volume uiy =~ o/R, where o is the sur-
face tension between the ordered phases. The gradients
of chemical potential are of order Vpu =~ o /(o R?), and
drive currents j = MV yu. The flux of order parameter
thus created across a boundary causes it to move with
a velocity of order dR/dt ~ j/vo ~ Mo /(¢¥ZR?), which
leads to the “Lifshitz-Slyozov” or diffusive growth law
R(t) = (Mat/¢3)'/3, where 1 is the value of the satu-
rated ordering field.
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2. Diffusive thickening of surface layer

This approach may be used to estimate the growth law
for a surface layer in contact with bulk domains. Suppose
that the surface layer is a thickness h(t) and that there
are bulk domains characterized by a scale R(t) a distance
of order R(t) above the surface. Again, since the surface
domains are very flat and thus have a small amount of
interface energy stored per unit volume, I conclude that
the gradients of x in the region between the bulk and sur-
face domains are just Vu =~ o /(o R?). Thus the rate of
growth of the surface layer will be dh/dt ~ Mo /(¥ZR?);
the known behavior of R(t) leads to the scaling law
h(t) = R(t). Alternatively, if the thickness of the “deple-
tion” region between the surface layer and the bulk do-
mains is of order h(t), then Vu = o/(1poRh). This leads
to the growth equation dh/dt ~ Mo /(¥2Rh), which
again gives the scaling result h(t) = R(t) when the ex-
plicit bulk result for R(t) is adopted [13].

3. Stability of plated structure under partial wetting
conditions

As the surface layer thickens, if the equilibrium wet-
ting state is partial wetting, one might ask how likely it is
for an interfacial fluctuation to occur that punches a hole
through the metastable surface film. Since such a fluctu-
ation requires an amount of surface area of order A%~ to
be created, the associated activation barrier grows with
time as Faet =~ ch?™! o t(4=1)/3, The number of possi-
ble sites for such a hole is of order (S/h)?~!, where S is
the characteristic length of the sample. The total rate at
which these fluctuations will be activated therefore de-
creases with time as S41¢~(4=1)/3 exp(—¢(@=1)/3)  sug-
gesting that a plated surface quickly becomes very stable.
This rate estimate also suggests that at late times, sta-
bility of plating increases with space dimension. It would
be useful to better understand the time scale for a plated
surface layer to relax to a partially wetting configuration:
this will depend sensitively on the rate at which surface
fluctuations grow in amplitude on the (moving) surface
domain wall. The simulation results of Sec. IV indicate
that this time can be very long: however, as yet I do not
have a convincing estimate for it.

4. Mullins-Sekerka instability of surface domain

We have seen that a plated surface layer should asymp-
totically thicken at the same rate as the bulk domains.
Thus I envision a flat interface moving at a velocity
v =dR/dt ~ (Mo /¥2)t~?/3. Since the process by which
material is transported into the surface layer parallels
the diffusion of heat or impurities from a moving solid-
liquid interface, one might ask whether there is a Mullins-
Sekerka instability in our case. In fact, the “chemical
model” formalism of Langer [14] can be directly applied
to this problem, resulting in a prediction of a characteris-
tic wavelength A\* =~ /2Dd,/v, where D is the diffusion
constant (D = kT'Ma in the unrescaled mean-field the-
ory) and do = o/(kTay2) is the appropriate mean-field
capillary length (ratio of surface tension to total free-
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energy density of the ordered phase). The interface is
unstable to fluctuations in the interface at a scale longer
than A*.

The scaling result for the interface velocity v = dR/dt
leads to A* = R(t). It is thus likely at late times for the
surface layer to develop corrugations at the scale of the
bulk ordering wavelength. Of course, fluctuations in the
diffusing field due to the bulk pattern will interfere with
the diffusing field at scales of A\*, and the simple theory
(for a flat interface entering a featureless medium) is in-
applicable. Nevertheless, this calculation is useful since
it indicates that the Mullins-Sekerka mechanism does not
introduce a new length scale for transverse structure of
growing surface domains that is smaller than R(t).

IV. SIMULATIONS

In Sec. I, by rescaling space, time, and field strength,
all parametric dependence of phase ordering near a sur-
face was moved into the surface potentials and the noise
strength. This suggests a transition for the surface
ordering from a noise-dominated to a mnoiseless (zero-
temperature) regime. A hypothesis about the long-time
behavior of surface domains in the two regimes was that
in the former, noisy, case, one observes domains of both
phases in contact with the surface; in the latter, one
observes only the attracted phase in a plated morphol-
ogy with no domain walls at z = 0. In this section, I
check this hypothesis, by numerically integrating phase-
ordering dynamics for different strengths of noise and
surface force.

J
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In order to study the dynamics of (8) I have used two-
and three-dimensional cell-dynamical systems (CDS’s)
[15], which may be roughly considered to be a dis-
cretization of the partial differential equations of Sec. I.
Space and time are discretized, and periodic bound-
ary conditions are used in the z direction in the two-
dimensional case and in the = and y directions in the
three-dimensional case. The z, y, and z positions run
from 1/2 to N, —1/2, Ny —1/2, and N, — 1/2 in steps
of 1, respectively. Impenetrable surfaces with identical
surface interactions at z = 0 and z = N, are considered.
Our model is an extension of one due to Oono and Puri,
and I follow their notation [15].

A. Cell dynamics for d = 2

The following iteration rule may be adopted for the
ordering field ¢ (z, z,t), where time t is an integer:

P(z,z,t + 1) = Y(z, 2, 1)
—R({((m[¢(z, z,t)])) — m[¥(z, 2,1)])

+VGN(z,z,t), (20)
where the “map” m is defined to be
m[p] = AY//1+ (A% — 1)y?
+s(z) In A — ¥ + D[{(¥)) — ¢], (21)

where s(z) is the one-body surface field (s(!)) of (8) and
where the averaging operator (()) is defined for any func-
tion F(z, z):

{(F(z,2))) = [F(z+1,2)+ F(zx —1,2) + F(z,z— 1) + F(z,z + 1)]/6
+[F(z+1,z+ 1)+ F(z+1,z— 1)+ F(z — 1,2+ 1) + F(z — 1,z — 1)]/12. (22)

These dynamics require m(z, z,t) and ¥(z, 2,t) for z = —1/2 and z = N, + 1/2: boundary conditions on these
fields can be used to supply these values. Discretizing z- V¢ = 0 and z- Vm = 0 gives

P(z,—1/2,t) =¢¥(x,1/2,1),
m(z,—1/2,t) = m(z, 1/27t),

The condition on 9 corresponds to sgL) = 0: this is eas-

ily altered to take into account nonzero contact forces.
In this section, surface forces are studied using the field
s(2z) which corresponds to s(!)(z) in (8): the other fields
5(")(z) coupled to ¢! are easily included.

The scalar noise N is defined at our lattice sites in
terms of currents {6,,60,}:

N(z,z,t) =] 61(x + 1/2,2,t) — 61(x — 1/2, 2, )
+02(z,z +1/2,t) — O2(xz,z — 1/2,t)],
(23)

where the 0’s are Gaussian random variables with the
correlations '

<0k (:L', Z, t)gkl (:13’, ZI, t/)> = Jk,k: Jm,wldzyz: (St,t' . (24)

The currents can be thought of as lying on the bonds
between the order-parameter sites. The currents through

'w(waNz + 1/27t) = d)(:chz - 1/27t)7
m(z, N, +1/2,t) = m(z, N, — 1/2,¢).

[
the boundaries vanish [2(x,0,t) = 62(x, N,,t) = 0] in
accord with the surface condition z - j = 0.

For t < 0, similar dynamics may be used, replacing the
map defined above with

_ QA
+s(2)In A — o + D[{(¥)) — ¢]. (25)

For A — 1+, the CDS reduces to Euler integration
of the nonlinear partial differential equation (8) with the
n = 1 surface force, boundary conditions, and noise as
defined in (8), and with an (order unity) mobility con-
stant M:

Op = MV3[1¢p + ¢° — V3 — s(2/AL)] + /am, (26)
where 7 = Q fort < 0 and 7 = —1 for ¢t > 0. In this limit,
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Q is ap/a of (8), the time steps are (in the units of the
differential equation) Ay = A — 1, the spatial grid has a
lattice constant of A, = (3A;/D)/2, the noise strength
of the differential equation is g = G(A;)?*¢/A;, and
R = (3M/AZ2). This limit also indicates that m plays the
role of the chemical potential of the continuum Landau-
Ginzburg model.

I have chosen the parameters used by Oono and Puri
[15]: R=1, A =13, and D = 0.7. The time step is
thus about 0.3 and the lattice constant is of order 1.1 in
the units of the partial differential equation (PDE). The
fact that a discrete mapping can be defined with such
a large time step motivates the use of the CDS rather
than direct integration of the nonlinear PDE. Another
favorable property of the CDS is that it is very stable in
the presence of moderately large external fields (s = 0.5).
The noise strength G and the surface fields s(z) of the
CDS can be taken to be the parameters g and s(l)(z) up
order-unity prefactors.

I have examined two types of surface interactions:
a short-range “S-function” interaction s(z) = HO, /2
and a long-range “van der Waals” interaction s(z) =
H(1+ [z —1/2]3)"!. These interactions are applied near
the surface 2z = N, as well. In each case, the sum
>, s(z) = 1,and so H is of order the total integrated sur-

face potential (sg) of Sec. I). The surface field strength H
and the noise strength G thus describe the ¢ > 0 model;
in addition, the parameter Q completes the description
of the model for ¢t < 0.

B. Cell dynamics for d = 3

The two-dimensional model described in the preceding
subsection is easily extended to d = 3, to the geometry
where there are two parallel zero-flux surfaces at z = 0
and z = N,. The iteration rule (20), the maps (21), and
(25), and the boundary conditions (23) are unchanged
apart from the addition of the y coordinate. The noise
source requires the addition of another Gaussian field 5.

The averaging operator of Oono and Puri for d = 3 is
used,

(F(z,2))) = {6[F(z+1,y,2) + -]
+3[F(z+ 1, y+1,2)+ -]
H[F(z+1y+1,2z+1)+--]}/80. (27)

In this case, the time step is A; = A — 1, the lattice
constant is now A, = (40A;/11D)/2, R = 40M/(11A2),
and g = G(A;)?*Y4/A,. Again, D = 0.7, A = 1.3, and
R =1 in these calculations, which corresponds to A; =
0.3 and A, = 1.25.

C. Zero-temperature equilibrium wetting behavior

With G = 0 one can observe the zero-temperature
transition from partial to complete wetting for droplets in
contact with the active surfaces using the rescaled model
for t > 0: as expected, this occurs for H ~ 1. This tran-
sition can be predicted using the continuum free-energy
density
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FIWl = (V9 - 0ttt se/aay (28)

by calculating the surface tensions. The surface tension
between the two phases may be computed from the zero
temperature “kink” solution to the equilibrium condition
in the bulk, —1o + 13 — V2o = 0. The solution is simply

to(x) = tanhz/v/2. (29)

The surface tension is just

o= [ de|L(wyo) - Luz + Lus (30)
N AR AR
which yields o = 24/2/3 = 0.9428 ... .

The difference in surface tensions between the two or-
dered phases and the substrate is

C1y—Oay = / " dx(Flps] - Flo-)), (31)

where 94 (z) are solutions to p(z) = 0 connecting to
P(z) = £1 at z — co. A lowest-order estimate of these
solutions is ¢4 = %1, giving

01,5 — 02,5 = 2/ dzs(z/A;) = 2Aw/ dz s(z).
0

(32)

For the two types of surface interactions studied, (a)
s(z) = HO(1 — x) where O(z) is the unit step function
and (b) s(z) = H/(1+z>), the surface tension differences
are

(a) 01,5 — 02,6 = 2A,H,

(33)
4
3v3
For the discrete CDS, a better estimate of 01, — 02 s for
case (b) is the sum

(b) O1,s — 02,5 = AmH ~ 24AmH

1
- ~3.4AH. (34)

01,3—02,822AmH Z 1+Z

2=0,1,2,...

Young’s law states that the equilibrium wetting angle
0w should be determined by [1] cos 0w = (01,5 —02,5)/0-
For d = 2 where A, = 1.1, the two types of surface
interactions yield (a) cosfw = 2.3H and (b) cosOw =
4.0H. Thus complete wetting should occur for (a) H >
0.44, and (b) H > 0.25.

As an example of the use of this criterion, I have de-
termined the zero-temperature wetting behavior of the
§-function potential [case (a) above; in the CDS it is of
course a step-function potential] for d = 2. A small sys-
tem with N, = 128 and N, = 32 was studied, with an
initial condition consisting of a 32-cell wide band of the
preferred phase: ¥ (z,z,t = 0) = +1 for 48 < z < 80 and
Y(z,z,t = 0) = —1 otherwise. The zero-noise CDS was
applied to this state and an equilibrium state was ob-
tained. The equilibrium interface shape extracted from
the zero-crossing points of the final field configuration
for various H is shown in Fig. 2. As H is increased, the
contact angle is reduced. For H > 0.5 complete wetting



2868

T T T 7T

60 L I T T T T | T T T T -1_
L 0—function surface field 4

30 1 1 1 1 | 1 1 1 Il l 1 1 L 1 I

FIG. 2. Equilibrium interfaces showing contact angles for
é-function surface interactions. Interfaces for H = 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 are shown. The
wetting surfaces are at z = 0 and z = 31; the = coordinate
runs from 0 to 127.

occurs, close to our estimate of 0.44.

In Fig. 3 the contact angles extracted from the inter-
faces of Fig. 2 are compared to the continuum estimate
Ow = cos™!2.3H (the contact angles were extracted by
fitting the interfaces to circles). We see that there is close
agreement for small H, but for H > 0.3 the simulation
contact angles are somewhat larger than those predicted
by the simple estimate above. This is likely due to neglect
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FIG. 3. Circles indicate the contact angles derived from

the interfaces of Fig. 2. Solid line is the estimate based on
analysis of the continuum model.
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of deformation of the uniform states ¥4 by the surface
potential.

Similar agreement between the above estimate and
the CDS was found using the van der Waals potential
(b). The agreement between the continuum estimate and
these crude measurements indicates that the CDS has a
zero-temperature wetting transition at a value of H in
reasonable agreement with that of the continuum model.

D. Exchange of dominance of noise and surface force
at early times

I have checked the scaling prediction VG ~ H of a
transition in the late-time morphology from surface plat-
ing to isolated surface droplets in contact with the surface
at the equilibrium contact angle. Our studies have been
of 64 x 64 cell systems, with equilibration for 256 time
steps before t = 0, with @ = 1. Following this initial
equilibration, I have studied the evolution of the ¢ > 0
dynamics for up to 50000 time steps. After ~ 400 steps,
the morphology is stable, and runs to t = 1024 were used
to determine the late-time morphology.

The late-time morphology was determined by counting
the number of boundary sites for which ¢ < 0: if there
are none, the morphology is considered to be plated,
while if there are any sites with ¢ < 0, the morphology is
considered to be “surface droplets.” At late times, such
sites always indicate regions of nonpreferred phase in con-
tact with the surface. Figure 4 shows a series of final
states similar to those used for this study, for G = 0.01,
and with H = 0.1, 0.2, 0.4, and 0.6. For H = 0.1 and
0.2, interfaces between the two phases are in contact with
the surfaces z = 0 and z = 64. However, for H = 0.4
and 0.6, we find a plated morphology: ¥ > 0 next to the
surfaces z = 0 and z = 64. In this case (G = 0.01), the
change from surface droplet to plated morphology occurs
at about H = 0.25.

Figure 5 indicates the plating-droplet transition for
d = 2 and d = 3: over a large range of G and H, the
scaling prediction of G ~ H? holds. The transitions are
numerically almost the same in two and three dimensions,
in agreement with the scaling argument. This behavior
is insensitive to the initial conditions: runs that use an
initially homogeneous initial condition (¢ = 0) lead to
the same results.

E. Scaling behavior of ordering at late times

The bulk pattern at late times may be studied using
the real-space correlator defined in the z direction:

g(z,t) = N;l zNz—l Z¢(w',z,t)¢(m' +z,2',t),

(35)

which corresponds to the Fourier transform of the scat-
tering function that would be experimentally observed
in elastic scattering with momentum transfer in the z
direction. This function is dominated by the bulk and
an oscillating behavior of g(z,t) is observed; as z — oo,
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g — 0. The location of the first zero of g(z) indicates the
domain size R(t); we observe this to increase for ¢ > 500
roughly as ¢!/3 in the absence of noise and surface forces,
as reported by Oono and Puri [15].

At late times for the plated morphology, one can mea-
sure the thickness of the surface layer by finding the z
position h(t) of the first zero of the z-order parameter
profile:

$(z.t) = N1 Y, 2, 1), (36)

In Fig. 6, the evolutions of the two lengths R(¢) and h(t)
are shown for three cases using the é-function surface po-
tential, @ =1, H = 0.2, and (a) G = 1072, (b) 1074, and
(c) 1078, Each of these results is obtained from averaging
of results of six runs using different pseudorandom num-
bers. In each of these cases, equilibrium partial wetting
is expected since the Ginzburg parameter G < 1 and the
surface field is well below the zero-temperature complete
wetting threshold H < 0.5.

In case (a), h and R grow at almost the same rate
[Fig. 6(a)] and for times beyond 3000 (Int > 8) approach

(c)

FIG. 4.

(d)

Configurations of 64 x 64 CDS at time ¢ = 1024 for G = 0.01 and H = 0.1, 0.2, 0.4, and 0.6 are shown in (a),

(b), (c), and (d), respectively. The wetting surfaces are at the top and bottom of the figures. Cases (a) and (b) show surface

droplets; (c) and (d) show “plating.”
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t'/3. In Fig. 7(a), I show %(z,2) at t = 1024: the bulk
pattern is seen to extend to within 2R or so of the wet-
ting surfaces. Figure 8(a) shows the ¢(z) plotted at a se-
ries of times: the surface concentration waves penetrate
only about a wavelength into the bulk, where the random
pattern begins. In this case, transport of material to the
surface is very similar to transport in the bulk. Brown
and Chakrabarti have recently reported t'/3 growth of a
surface domain using a discretized Langevin equation in
two dimensions [16]: they choose parameters that result
in the development of a single surface domain in con-
tact with a random bulk domain pattern similar to that
shown in Fig. 7(a).
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FIG. 5. Transition from plating to surface droplet mor-
phology. Results for d = 2 and d = 3 are shown in (a) and
(b), respectively. The transition line is well fit by G = H?
over a very wide range.
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In the lower-noise case (b), Fig. 6 shows that the bulk
growth continues to behave as R =~ t1/3 at late times,
but that the surface domain thickness h lags consider-
ably behind R. With still lower levels of noise [Fig. 6(c)],
the bulk domains continue to grow as R = t!/3 at late
times, but now the surface domain is growing at an ex-
tremely slow rate over the times simulated (¢ < 50 000).
This slowing down may be understood at a qualitative
level by observing Figs. 8(b) and 8(c): these plots of ¢(2)
show that as the noise level is reduced, the concentration
waves penetrate further to larger values of z before they
are stopped by the random pattern that is triggered by
random fluctuations. Recall the estimate for the thick-
ness of the parallel waves of order w o< In(H/G'/?); using
a prefactor of 3 leads to an estimate of w ~ 9, 18, and 36
in cases (a), (b), and (c), which gives a good estimate of
the distance that the concentration waves propagate out
to in Fig. 8.

Plots of a configuration at ¢ = 1024 for these cases are
shown in Figs. 7(b) and 7(c). The concentration waves
order the region near the surface at very early times
(t < 300), but at very low noise levels, the resulting very
clean, periodic structure coarsens slowly at later times,
likely because the routes to shifts of the ordering wave-
length near the surface involve large increases in local
free energy. In the lowest-noise case, G = 1078, Fig. 8(c)
shows that there is almost no change in the structure of
the domain attached to the surface over the course of the
simulation.

Figure 8(c) also indicates how relaxation in the low-
noise cases will eventually occur: at t = 512 there are
four concentration peaks that approach ¢(z) = 1, the
saturated limit. At ¢ = 1024, the second and third peak
of ¢(z) are coalescing: Fig. 7(c) shows ¢(z,z) at that
time. By ¢t = 2048, Fig. 7(c) shows that this coalesence
is complete, since the second peak in ¢(z) is nearly sat-
urated and occurs between the second and third peak
positions at time ¢ = 512. At later times, the shape
of ¢(z) near z = 0 begins to change, accompanied by
a gradual decay of the second peak which indicates the
invasion of the surface pattern by the randomly oriented
bulk domains.

This suggests an estimate for the time that the surface
domain growth will lag over the bulk growth since the
t'/3 coarsening can only occur when the surface domain
is adjacent to inhomogeneities [as in case (a) and in the
latter stages of case (b)]. This will require at least a time
T =~ w3 to occur, the transport time across the distance
w that the concentration waves initially propagate. In
cases (a), (b), and (c), these times are of order 800, 6000,
and 45 000.

In Fig. 9, R and h are shown for the case G = 0.01 and
H = 0.4. The effect of increasing the surface field at fixed
noise strength [compare Figs. 6(a) and 9] is similar to
that of decreasing the noise at fixed surface field [compare
Figs. 6(a) and 6(b)]: in either case at late times the length
h lags behind R due to the formation of a more ordered
surface wave structure at early times.

A similar study using the van der Waals surface po-
tential was done: the results are similar. No significantly
different late-time behavior is observed: the main dif-



48 INFLUENCE OF SURFACE INTERACTIONS ON SPINODAL ... 2871

ference is that at early times the remnant of the ¢ < 0
high-temperature adsorption extends to larger distances
z due to the long tail of the surface potential.

V. HYDRODYNAMIC EFFECTS
ON SURFACE STRUCTURE AT LATE TIMES

A. Flow-driven growth of bulk domains

At late times in fluid mixtures in three dimensions,
growth kinetics may be dramatically altered by surface-

tension-driven hydrodynamic flows. A scaling theory for
such growth may be constructed from the equation for
dissipative (Stokes) flow [5]

nVZu = Vp, (37)

where v is the fluid velocity, n is the viscosity, and p is
the hydrostatic pressure. In the bulk, I suppose that v ~
dR/dt, the interface velocity; p is estimated as 4 ~ o/R
(this is the interface energy per unit volume), and thus
Vp is taken to be of order o/R2?. Therefore dR/dt ~
o/n. The resulting growth law R ~ vot dominates over
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FIG. 6. Bulk domain scale R(t) and surface domain thickness h(t), for §-function surface fields with H = 0.2. In each case,

the dots indicate R(t) and the solid line indicates h(t), while the two dashed lines show the power laws ¢t!/? and ¢!/%. The
largest times are t = 50 000; the three cases differ only in the noise strength G used. (a) G = 10~2: bulk and surface domain
scales are comparable, and approach t'/3, at late times. (b) G = 10™*: bulk domains coarsen faster than surface domain
thickens. Surface domain thickness is not yet approaching t'/% as late as ¢ = 50 000. (c¢) G = 1078: bulk domains approach
t'/? growth at late times, while almost no surface domain thickening occurs beyond Int ~ 7.
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the diffusive coarsening law (¢!/3) at late times. The
characteristic velocity vo = o/n will play a central role
in this section.

In what follows, I estimate the rate of incorporation of
small droplets into a much larger one (possibly a surface
layer) via flows driven by capillary forces: my motiva-
tion is to understand how the diffusive surface domain
growth laws are affected by these flows. I first consider
a simple problem of coalescence of a single bulk domain
and a surface layer, then I use the result to study the ex-
perimentally relevant case of many bulk domains being

absorbed by a surface domain. Finally, I consider spread-
ing of surface domains in contact with bulk domains. In
each case, vy emerges as the characteristic velocity for
flows, and thus for interface motion near surfaces.

B. Incorporation of one bulk domain
into a surface layer

We begin with a simple problem: an estimate of the
time required for a single small droplet to flow into a
large surface domain. Suppose that the small droplet is

(b)

(¢)

Domain patterns for a single realization of d-function surface fields of strength H = 0.2 and noise strength (a)

FIG. 7.
G =10"2% (b) G = 107%, and (c) G = 1078, at time t =

1024. System size is 256. As the noise strength is reduced,

concentration waves form out to larger distances, and require longer times to be replaced with a single surface domain in

contact with a disordered bulk pattern.
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a hemispherical protrusion from a planar interface: the
small droplet is centered at x = 0 and has a radius r(¢);
the free surface of the surface domain is at z = 0 and
the solid substrate is at z = —h: Fig. 10(a) shows the
geometry. The flows that incorporate this droplet into
the large domain may be represented by flows describing
a “source” at x = —(7/2)z and an equal “sink” at x =
(r/2)z. For incompressible flow, the divergence of the
velocity field is

V.v(x) = fl63(x +r3/2) — 3 (x —r2/2)].  (38)

The amplitude f is just the amount of fluid transported
from the small droplet into the large domain per unit
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time, or the rate of change of volume of the small droplet:
f = 2nridr/dt.

Solving VZv = 0 gives us a “dipolar” flow with velocity
field

I b,

v(x) = 27

(39)

where only the first-order term in the droplet size r is re-
tained. In order to take into account the capillary forces,
I use an energy balance argument to relate the energy
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Concentration as a function of distance from the wetting surface for various times: averaging has been done over
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with Fig. 5(a), we see that the larger H in this case causes
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dissipation with the rate that the interfacial energy is
depleted. The rate at which energy is dissipated by the
flow is

a)3-E|visc = _277/

[z|>7

@z ov; \* (40)
x 2 amk .

220 “5@*\

z=-h

L

g

>@//§\MW\K I ©

FIG. 10. Geometry of capillary flows from bulk domains
into surface domains: (a) A single bulk domain is adsorbed
by a surface domain of transverse dimension much larger than
the bulk domain size. The surface domain boundary is located
at z = 0, the substrate is located at z = —h, and the bulk
domains are presumed to be of typical size r(t). (b) Many
bulk domains of size r flowing into a surface domain of trans-
verse dimension L and thickness h. (c) Spreading of a surface
domain in contact with random bulk domains.
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This integral is cut off at |z| < r since the flows at short
scales are smooth and only have this dipolar character at
longer length scales.

Rescaling lengths by r reduces the dissipation rate to

nf?C (a1)

8 Eyige = — 12—
V1s! 27['27'3’

where I have defined the constant of order unity

C = *z ) (82, Di)?. (42)
|z|>1 ik

Equating (41) with the rate of change of interfacial en-
ergy OtEgurs = 4wordr/dt, I find

dr 2w

— = ——p. 43

it~ "™ (43)
The rate of change of the small bubble radius is of order of
the interface velocity for bulk hydrodynamic coarsening
vo = o/n. The transverse velocities in the large domain
a distance r away from x = 0 are also of order vq as this
draining proceeds.

C. Many bulk domains draining
into a surface domain

The same basic scaling applies to the draining of a
large number of small domains of size r into a roughly
flat interface, the situation experimentally encountered.
Suppose that the small domains are distributed with an
areal density of p, = 1/r%(to) over a surface domain of
radius L in the z = 0 plane, where t¢ is an arbitrary time
after a quench. The geometry is shown in Fig. 10(b).

Using superposition of the single-domain flows of the
preceding subsection, the velocity field is

Vi) =ripa [

|| <L

d’z'D(x — x'), (44)

where f = 4nr2dr/dt as before. Above this dipole sheet,
the velocity field decays away as

~ 3" dPa
v(z) = 2 P (45)

and thus the total dissipation is of order

dz

= (46)

8t-Evis<: = _anfzrng/

z>r

This leads to an estimate of 8;Eyisc = —nL2f2pZ%/r. This
should be equated to the total rate of change of the in-
terfacial energy: 8;Esurs =~ 0paL2rdr/dt, which gives

dr Vo
dt = par?’

(47)

The transverse velocity near the edge of the surface
domain is thus of order

d?z
vy ~ ’I‘fpa/ . (48)

3
<le|l<L T

Since this integral converges for L — oo, I conclude that



48 INFLUENCE OF SURFACE INTERACTIONS ON SPINODAL ... 2875

v & fpa = vo. Thus the transverse velocities are inde-
pendent of the size r(t = 0) of the small domains and
also are independent of any characteristic transverse size
L of the surface domain.

D. Flow slowing by dissipation
due to proximity of substrate

The preceding discussion ignores the effect of the sub-
strate, on which the velocity must vanish. As long as
the thickness h of the surface layer is larger than the size
r of the domain that is being absorbed, the preceding
estimates are dimensionally correct. However, if h < 7,
there is a large contribution to dissipation from the veloc-
ity gradient required to satisfy the boundary condition.
For a single domain, the dissipation due to flows above
z = h follows from (41); in the region between z = h and
z = 0 we estimate a velocity gradient of order (dr/dt)/h.
Integrating this over a region of width r and height A the
total dissipation rate is obtained:

dr\? r
O¢Eyisc = —r (Ef:) (1 + E) . (49)

Equating this to the rate of change of interfacial energy,
I obtain

dr Vg

dt  1+r/h (50)
as the estimate of the characteristic velocity of the drain-
ing process. For h < r, the flows are greatly slowed down
to velocities of order voh/r; for h > r, the velocities are
of order vg.

All of the above results satisfy the (entirely differently
derived) scaling result of Guenoun, Beysens, and Robert
[17] that the growth laws for the parallel and perpendicu-
lar dimensions of domains in contact with a interface are
the same. In the present work, this arises simply because
of the dipolar nature of the incompressible flow fields that
incorporate the bulk domains into the puddles.

E. Spreading of domains in contact with a surface

A final effect that may lead to an acceleration of the
rate of growth of L is the spreading of surface domains
driven by the surface tension difference 04 s — 02 ,. Un-
der a wide variety of circumstances, if one of the phases
completely wets the substrate then there is a universal re-
lation (“Tanner’s law”) [1] between the three-phase con-
tact line velocity v and the apparent or dynamic contact
angle 6:

v =vT(0). (51)

The function T is universal and behaves as # for small
0; T (m) = +o0o. Remarkably, there is no dependence on
01,s — 02,5 this is due to the large amount of dissipation
at the contact line, which limits the velocity to order vg.

This law may be used to examine whether droplet
spreading may play a role in accelerating the size of
droplets in contact with a wetting substrate, while being
in contact with a bulk spinodal pattern which is enlarg-

ing the droplet. I suppose that the droplet width is L,
its thickness is h, and that the droplet volume V = hL?
is being increased per unit time as

—— =voL?. 52
g = o (52)
This corresponds to continuous operation of hydrody-
namic flows incorporating the wetting phase into the
droplet: the geometry is indicated in Fig. 10(c). The
contact line velocity is just dL/dt, while § = tan~! h/L:

dh h _
E = 9 |:1 - —L“T (tan lh/L):I ,
(53)
dL _
7o voT (tan 1 h/L) .

The two terms on the right-hand side of the first equa-
tion in (53) indicate, respectively, the effects of flows into
the droplet from above and spreading flows parallel to
the substrate. These equations have the scaling solu-
tions h(t) = Avet and L(t) = Buot, for constants A and
B of order unity. Thus, under the most favorable con-
ditions for droplet growth, namely spreading of droplets
being “inflated” by flows from nearby bulk domains, I
find dL/dt = dh/dt =~ vo, and thus L ~ h = vgt.

VI. EXPERIMENTS

A. Phase ordering of polymer mixtures

The reader may be skeptical about the possibility of
observing the effects discussed in Secs. II-IV, as they re-
quire low-noise conditions and observation at small times
and distances. However, experiments on phase order-
ing of polymer mixtures have recently made feasible such
studies.

The equilibrium parameters of the free energy (1) have
the following dependences on the degree of polymeriza-
tion NV for polymer melts [18]:

e~ (T/T. —1)/(Nb?), uw=1/(Nb?), c~1/b%72,
(54)

where b is the monomer scale (of order 5 A). The factors
of 1/N reflect the reduction of translational entropy of a
polymer, relative to that of disconnected monomers. The
transition temperature T, is itself proportional to 1/N
since the repulsive energy between unlike monomers is
unaffected by the chain connectivity. The noise strength
of the rescaled model (8) is therefore

g=N"@"2/21 _/T,|~(4-d/2, (55)
For d =3, g = 1/4/N|1 — T/T.| and thus nonclassical

critical behavior will be seen only in the narrow temper-
ature range [19] |1 - T/T.| < 1/N.

Recent experiments by Bates and Wiltzius [20] on bulk
spinodal decomposition had N =~ 3000, 7, ~ 335 K, and
T = 300 K, yielding g = 0.06. Such experiments are at-
tractive also because the slow diffusion of the entangled
polymers allows early times to be observed. In the above
experiment, the diffusion constant for concentration fluc-
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tuations (D = kT Me in the unrescaled theory of Sec. I)
was of order D ~ 107 '%cm?/sec. Since the correlation
length is of order the coil size (£ =~ 100 A), the scale for
early times is £2/D = 103 sec.

B. Measurements of concentration oscillations
near a surface

Experiments by Jones et al. [21] have been done on
a similar mixture in contact with a planar interface that
attracted one of the components. The evolving struc-
ture was studied with forward-recoil energy-loss spec-
troscopy, which allowed a direct measure of the order
parameter averaged over the interface plane as a func-
tion of height [¢(z) of Sec. V], with resolution of 100
A. The polymer mixture was a blend of N = 2300
poly(ethylenepropylene) (PEP) and deuterated PEP (d-
PEP) at critical composition, with T, =365 K. Two
quenches were made, to T' =310 and 350 K; I estimate
g = 0.05 and 0.10 for these two runs. In both runs,
a damped oscillating ¢(z) was seen to form and then
coarsen in a process similar to that discussed in Sec. V.

The coil size of the polymers was of order R, =
(N/6)/2b ~100 A: the coherence lengths are thus ¢ ~
R,/\/1—T/T. = 260 and 491 A. In comparison, the ini-
tial inverse wave number of the structure (of order £) was
experimentally determined to be 250 and 475 A. Precise
values of the effective diffusion constant are not reported:
I estimate D ~ 107!3(1 — T/T.) cm?/sec = 1.5 x 1074
and 4 x 1071% ¢cm?/sec.

The polymer mixture in this experiment was an 8000-
A-thick layer with one face in contact with a silicon sub-
strate and the other in contact with vacuum. The free
surface attracts d-PEP, while the Si interface attracts
PEP. I estimate the rescaled surface field of Sec. IT us-
ing (54): s = NY2(1 — T/T.)"*¢(Mb2. The unknown
quantity o1 is of order of the difference in surface ten-
sion (in energy units of kT') between pure PEP and d-
PEP at the surfaces: the surface tension difference [22] is
10~ ! dyne/cm, giving 0(Vb? =~ 5 x 1073, Thus sg) ~ 1.5
and 2.5, and thus there should be complete wetting in
equilibrium, as is observed experimentally.

Therefore, \/_(_]/sg) ~ 0.15 and 0.13 for the deep
and shallow quenches, respectively: both quenches are
slightly inside the plating region of Fig. 5(b). This con-
clusion is supported by the measurements of ¢(z) re-
ported for the deep quench [21]: the volume fraction at
z = 0 of the preferred phase saturates rather quickly
at a value less than 1, and the first minimum in ¢(z)
is not saturated, behavior similar to that of Fig. 8(a)
(9~ G =001, sP ~ H=0.2).

At late times (105 sec) the oscillations in ¢(z) were seen
to coarsen at a rate similar to that observed in different
measurements of bulk growth [approaching R ~ (D¢t)*/3
at late times]. However, at these late times, the concen-
tration oscillations from both surfaces begin to interact, a
situation that I have tried to avoid in the simulations in
order to study the coarsening of a single wave in contact
with random bulk domains.

C. Measurement of transverse structure of bulk
and surface domains

I now consider experiments of Cumming et al. [23],
which complement those of Jones described above, being
light scattering experiments with scattering wave vector
in the plane of the wetting substrate. The mixture was
N = 29 polyisoprene (PI) and N = 78 PEP at critical
composition. A cell of thickness 500 ym was used: the
cell walls are transparent to the laser beam, and were
completely wet by the PEP-rich phase for all of the an-
nealing temperatures studied. By using a video camera
in the scattering plane, the experimenters were able to
follow the transverse structure factor with time resolu-
tion of =~ 10 sec.

Quenches were made through T, = 310 K, but in con-
trast to the previously described experiments, the final
temperature was at most 1 K below T,. Using N = 40,
g > 2.5 for all of these experiments: mean-field estimates
for £ or o will be wrong. Fortunately, Bates et al. [24]
have carefully characterized an almost identical mixture
(N =29 PI, N = 73 PEP at critical composition). The
critical temperature was 7, = 311 K, and nonclassical
static and dynamic critical behavior was found (in the
one-phase region) below T, ~ 340 K (where g =~ 0.5).
The experiments of Cumming et al. are deep inside the
fluctuation region, and so § = & (1 — T/T.)" with the
3d Ising exponent v = 0.63.

Using N =40 and b = 5 A, & = (N/6)1/2b = 13 A.
The diffusion constant for concentration fluctuations is
D =~ kT /67mn¢: the viscosity is 7 = 4 poise, which gives
D =~ 5x107%1 — T/T.)%% cm?/sec. Early times are
before a time t, = £2/D ~ 3 x 107%(1 — T/T.)" % sec,
which is only 6 sec for the shallowest quenches (T. — T =
0.15 K). The surface tension between the two phases is
of order o =~ kT/¢? =~ 2.5(1 — T/T.)''?® dyn/cm. The
mass density of the mixture is roughly 1 g/cm3.

I estimate a diffusive growth law (cgs units):

R4(t) = (DE)Y® =~ (6 x 10716¢)1/3, (56)

We note that R, is independent of the quench depth.
The characteristic hydrodynamic velocity (cm/sec) is

vo = = ~ 0.7(1 — T/T.)*2. (57)
n

Hydrodynamic coarsening will not begin until times of
order t; =~ 30t.: the rationale is that the domains should
be at least a few £ thick, and concentrations should be
near their equilibrium values in the domain interiors in
order for surface-tension-driven flows to occur [5]. The
growth law including hydrodynamic effects for ¢t > t is

Rh(t) = Rd(th) + C'Uo(t — th), (58)

with a prefactor C which has been observed to be roughly
C = 0.1 [20]. Such a growth law could be supposed to
describe either bulk, or surface coarsening, as discussed
in Sec. V.

In Fig. 11 data from the experiments of Cumming et al.
[23] are shown: the symbols show the logarithm of wave
number where a peak was observed in the light scattering
structure factor, versus logarithm of time, for quenches
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of 0.15, 0.35, 0.65, 0.75, and 0.95 K below the critical
point. As can be seen from the data, for the two shallow-
est quenches, a rather slow growth (approximately t1/3
at late times) was observed, while for the two deepest
quenches, a much faster growth law was seen: the exper-
imenters estimate t3/2 growth. For the quench of 0.65 K,
both diffusive and fast growth were observed simultane-
ously. By measuring the growth rate of peak intensity
with time, the experimenters concluded that the slow
growth applied to the bulk of the sample, while the fast
growth applied to only a =~ 10 ym-thick region, presum-
ably at the cell walls. Microscopy also suggests that the
fast ordering occurs within 10 pm of the cell window and
that the length scale in the bulk corresponds to the peak
showing slow growth at late times. Finally, the ratios of
the two peak scattering intensities at 800 sec after the
0.65-K quench are consistent with the fast peak being
the result of a region of order 10 pum thick, and the slow
peak being due to scattering from domains occupying the
remaining 500 pgm of “bulk.”

Also shown are the logarithms of the wave numbers as-
sociated with periodicity with wavelengths 2R, and 2Ry,
w/Rq4(t) (dashed line) and 7 /Ry (t) (solid curves), for var-

2

logy, [ (wave number) (um)]

logw[(time / sec)]

FIG. 11. Comparison of fast and slow growth measure-
ments [23] with estimated diffusive and hydrodynamic growth
laws Rg4(t) and Rh(t). Plotted is logarithm of inverse length
(wave number of peak of observed scattering in the experi-
mental case) in inverse micrometers versus logarithm of time
after quench in seconds. Experimental data for quenches of
0.15, 0.35, 0.65, 0.75, and 0.95 K are plotted along with log-
arithms of the wave-number estimates w/Rgq (dashed line)
and 7/Rj (solid lines) for the same quench depths. For
each quench, Rqy and R, meet at times ¢, (our estimate of
the time when hydrodynamic coarsening becomes possible);
deeper quenches have earlier values of ¢t;,. We observe that
in each case, the experimental fast growth never exceeds Rh;
the experimental slow growth rates are comparable with Rg,
although they have a dependence on quench depth not pre-
dicted by the scaling result of Sec. III.
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ious 1 — T'/T, at times beyond t;. The prefactor of the
observed t!/3 growth law within a factor of 2 of the es-
timate Rgq. The experimental data for the bulk growth
show a trend toward faster growth for deeper quenches
not present in R;: interestingly, this effect is more pro-
nounced at earlier times.

For the three deepest quenches, the experimentally ob-
served rapid growth never exceeds our estimate for Ry,
in agreement with the arguments in Sec. V suggesting
vo as a limiting interface velocity. The fast growth is
consistent with growth slower than the hydrodynamic
coarsening observed in bulk experiments [20].

Why is t'/3-law bulk growth observed in the three shal-
low quenches? At critical composition, linear growth is
expected for bulk domains. However, the argument lead-
ing to this result assumes a uniform ordering structure:
it is possible that in these experiments, the imbalance in
composition induced by the surface is sufficient to dis-
connect domains so that hydrodynamic coarsening can-
not proceed. Recent experiments by Jayalakshmi, Khalil,
and Beysens [25] have observed a surprisingly sensitive
dependence of growth laws on concentration. They have
studied a fluid mixture with a concentration gradient of
order 0.02/mm. Under this kind of gradient, fast growth
is observed only in a range of concentrations of order
0.025, for quenches of 0.01-0.04 K.

I note that there is a suggestion in Cumming’s 0.35-K
data that hydrodynamic coarsening begins to operate at
about 100 sec, but then ceases at roughly 1000 sec. This
suggests an explanation of why the late-time diffusive
coarsening is faster for deeper quenches, as hydrodynamic
coarsening can occur earlier for the deeper quenches, as
is evident from our estimates of ¢5 in Fig. 11.

Shi and Cumming [26] recently observed fast sur-
face growth in a low-molecular-weight binary mixture
(guaiacol and hydrated glycerol) that is known to have
Ising critical behavior. The various physical quantities
and consequent growth rates were comparable to the
PEP-PI experiment, but better temperature control was
achieved. Deep quenches produced fast surface growth
with a growth law consistent with ¢t3/2. However, the
shallowest quenches (for which the origin of time is best
determined) showed surface domain size to grow roughly
linearly with time, while diffusive bulk growth was simul-
taneously observed.

In a different binary fluid mixture, Guenoun, Bey-
sens, and Robert [17] have observed very-late-time do-
main growth near a wetting substrate. Bulk domains
were seen to increase in size linearly with time, while the
transverse and perpendicular scales for surface domains
were observed to grow at rates comparable to that of
the bulk, but with a growth law of ~ t%6. There is no
theoretical explanation of the latter exponent.

CONCLUSION

I have outlined the physical scales relevant to spin-
odal decomposition of a mixture near an interface that
attracts one of the pure components. Immediately after
a relatively deep quench, a flat surface domain forms in
contact with the surface for sufficiently low-noise condi-
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tions. Because of the sensitivity of the unstable mixture
after the quench, surface fields much weaker than those
required for complete wetting in equilibrium can lead to
an ordering morphology with no domain walls contacting
the surface. This may be of practical use in the deposi-
tion of microscopically thin layers of a material onto a
substrate under nonwetting conditions.

The transition from this kind of morphology to
droplets in contact with the substrate occurs in the non-
linear theory (studied with simulations) for surface field
to noise ratios in agreement with our scaling arguments. I
have discussed relevance to experiments on polymer mix-
tures, where the noise strength (equivalently the fluctu-
ation region near the phase transition) is small due to
the supression of concentration fluctuations by the chain
connectivity.

The phenomenon originally reported by BE [4] and
later observed experimentally [21] of concentration oscil-
lations extending into the bulk from the substrate has
been observed. The case where the surface field is the
symmetry-breaking element in the model has been stud-
ied here; a front is observed to propagate into the bulk
and is eventually halted by collision with ordering ran-
domly oriented bulk domains. Since bulk domain growth
is triggered by thermal fluctuations, the concentration os-
cillations penetrate a distance that is dependent on ther-
mal noise strength [4]. However, it must be noted that
for more than one or two oscillations to be observed, the
effective noise strength must be extremely low due to

the logarithmic dependence of the width of the surface-

ordered zone on g.

At later times, the bulk and surface domains will grow,
and I have measured the growth of lengths characterizing
the domains. The bulk domains approach a t'/3 growth
law under a variety of circumstances, as one expects
from a scaling calculation. Surface droplets, which have
essentially the same structure, are observed to thicken
at nearly the same rate. However, plated structures
with a series of concentration oscillations thicken much
more slowly than do the bulk domains. The surface do-
main does not coarsen appreciably until the concentra-
tion waves are destroyed by the invading bulk domains.

A scaling analysis of later times, when hydrodynamic
flows may be driven by surface tension, suggests that bulk
and surface domains should not differ greatly in growth
rates, although dissipation in the surface layer may slow
its growth over that of the bulk. The diffusive and hydro-
dynamic growth rates are comparable to the “slow” and
“fast” growth observed in recent experiments. However,
it is unclear what length of time is required for relax-
ation of the droplet configuration to equilibrium under
conditions of partial equilibrium wetting, how that time
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depends on noise strength and surface fields, and how
flows affect this relaxation.

Recent experiments [17] indicating a very sensitive de-
pendence of growth law on concentration are not under-
stood. Our understanding of how hydrodynamic flows af-
fect coarsening at later times is still at a primitive stage.
An analytical approach to these problems is needed; per-
haps the recent approach of Mazenko to nonconserved
[27] order-parameter growth can be applied to these prob-
lems. Boundary effects have been explored in the noncon-
served case [28], but only bulk ordering has been studied
in the conserved case [29]. Efforts on addition of Stokes
flow to phase-ordering simulations [30] are promising and
could be used to study the droplet-surface flows discussed
in Sec. V.

On the experimental side, one can imagine examin-
ing larger swaths of the thermal-noise—surface-interaction
space, in order to examine the droplet-plating transition.
To this end, one can reduce g further (it is already sur-
prisingly small in current experiments [20, 21]) by using
larger-N polymers, although high viscosity and low dif-
fusion constants will quickly limit how high N can be
pushed. Quench depth is a useful parameter, as the noise
and the effective surface field have different 1 — T'/T, de-
pendence.

As mentioned in the text, current experiments on con-
centration oscillations have been done in rather thin sam-
ples; it would also be interesting to observe these phe-
nomena in thick samples, in order to see the interactions
between the ordered surface structure with the random
bulk pattern. At late times, the invasion of the waves by
the bulk domains, and under partial wetting conditions,
the decay of the plated structure to surface droplets are
phenomena of interest.

Scattering experiments could allow determination of
the appearance of contact lines on the free surface if a
probe was used that did not penetrate into the sam-
ple. Finally, it would be interesting to carry out experi-
ments similar to those of Cumming and co-workers [23,
26] on longer polymers such as those studied by Bates
and Wiltzius [20] in order to determine whether the fast
surface ordering takes place under classical fluctuation
conditions.
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FIG. 4. Configurations of 64 x 64 CDS at time ¢t = 1024 for G = 0.01 and H = 0.1, 0.2, 0.4, and 0.6 are shown in (a),
(b), (¢), and (d), respectively. The wetting surfaces are at the top and bottom of the figures. Cases (a) and (b) show surface
droplets; (c) and (d) show “plating.”



FIG. 7. Domain patterns for a single realization of d-function surface fields of strength H = 0.2 and noise strength (a)
G =10"% (b) G = 107% and (¢) G = 1078 at time t = 1024. System size is 256°. As the noise strength is reduced,
concentration waves form out to larger distances, and require longer times to be replaced with a single surface domain in
contact with a disordered bulk pattern.



